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ABSTRACT 

The prior knowledge of evapotranspiration (ET0) is crucial for estimating crop-water demand, preparation of 

water distribution schedules and water diversion. The present study investigates the utility of artificial neural networks 

(ANN) and lines a regression model (LRs) for forecasting ET0 based on hydro-meteorological data. Based on different 

inputs, eight ANN and LR models are developed. The results are compared with those of FAO-56 Penman-Monteith 

expression. The published daily climatic data from the Oakville Station (Canada) are used to verify the effectiveness of the 

developed models. Based on various performance indices, ANN models are found predicting ET0 more accurately than LR 

models. The best performing ANN model has parameters like previous day’s evapotranspiration, relative humidity, average 

temperature, solar radiation and wind speed as inputs. 
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INTRODUCTION  

Evapotranspiration is a term used to describe the demands of evaporation and the plant transpiration. Evaporation 

accounts for the movement of water to the air from the sources such as soil, canopy interception, and water bodies, 

whereas, transpiration accounts for the movement of water within a plant and the subsequent loss of water as vapor through 

stomata in its leaves. Modeling evapotranspiration has always been an important issue for irrigation and agriculture 

engineers. Irrigation engineers require it for determining irrigation water quantity for designing the canals while agriculture 

engineers for knowing the specific water requirements of a crop so that they can obtain a satisfactory yield. 

Numerous methods have been proposed for estimating evapotranspiration. The combination of energy 

balance/aerodynamic equations generally provides them accurate results as a result of  their foundation in physics and basis 

of  rational relationships [1]. The Food and Agricultural Organization of the United Nations (FAO) has accepted the FAO 

Penman-Monteith as the standard method for estimation of ET0. However, the large data requirement of this method is its 

greatest demerit. On the other hand, soft computing techniques like artificial neural networks (ANNs) are gaining 

popularity for forecasting hydrological parameters because of their ability to model both linear and non-linear systems 

without the need to make assumptions as are implicit in most traditional approaches. This ability of ANN capture 

relationships from given patterns Has enabled them to be employed in various hydraulic and hydrologic problems such as 

modeling of river runoff [2,3], stream water level [4, 5], river flow [6–8], evapotranspiration [9], ground water table 

fluctuation[10,11], reservoir operation rule [12–14], dispersion coefficient prediction [15], only to name a few. 
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In this study, the potential of ANNs is examined in estimating the actual evapotranspiration from limited climatic 

data. We have selected neural networks in our study as these heuristics are particularly suited for modeling nonlinear,                  

non-stationary and non- Gaussian processes like those seen countered in hydrological contexts. Linear regression has been 

included in this study as a yardstick to gauge the performance of ANN models because it is simple to develop and widely 

employed in hydrologic modeling. 

ARTIFICIAL NEURAL NETWORKS 

An artificial neural network involves a network of simple processing elements called neurons which can exhibit 

complex global behavior, determined by the connections between the processing elements and element parameters. 

Artificial neurons were first proposed in 1943 by Warren McCulloch, a neurophysiologist, and Walter Pitts, an MIT 

logician. While a neural network does not have to be adaptive, its practical use comes with algorithms designed to alter the 

strength (weights) of the connections in the network to produce a desired signal flow. The process is known as training or 

learning. Training of an artificial neural network involves two phases. In the first phase or forward pass, the input signals 

propagate from the network input to the output. In the second phase or reverse pass, the calculated error signals propagate 

backward through the network, where they are used to adjust the weights. The calculation of the Output Is carried out, layer 

by layer, in the forward direction. The output of one layer is the input to then ex-layer. In the reverse pass, the weights of 

the output neuron layer are adjusted first for  the target value of each output neuron is available to guide the adjustment of 

the associated weights. The weights on  the output and hidden layer neurons can be calculated using Eqs. (1) and (2), 

respectively [16]: 

              (1) 

              (2) 

Where, x = input value; η=learning rate; φ= output; andδisdefinedas2εq δφ/δI I, I being the sum of the weighted 

inputs, q= neuron index of the output layer, and εq=error signal. 

The above training method is known as the standard back-propagation training method. Since back-propagation 

employs a form of gradient descent, it is assumed that the error surface slope is always negative and hence, constantly 

adjusting weights toward the minimum. However, error surfaces often involve complex, high dimensional space that is 

highly convoluted with hills, valleys, and folds. It is very easy for the training process to get trapped in a local minimum. 

The problem of the local minima can be avoided by adding a momentum term for  the weight change to permit larger 

learning rates. The change of weight is then computed as follows: 

             (3) 

Where µ = momentum coefficient and ∆w (N + 1) = change of weight during N to N + 1 learning cycles. Thus, the 

new value of weight becomes equal to the previous value of the weight plus the weight change, which includes the 

momentum term. This training method is known as back-propagation with momentum. A typical ANN structure with five 

inputs R, T, ET0, t−1, ET0, t−2 and ET0, t−3 are shown in Figure 1. 
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MODEL APPLICATION  

Eight models, each of ANN and LR are developed for predicting evapotranspiration and their effectiveness 

evaluated on Oakville weather station (Canada). The predicted values of ET0by these models are compared with those by 

FAO-56 Penman-Monteith expression, which is described by Allen et al. [1] As: 

             (4) 

Where = slope of the saturation vapor pressure function (kPa°C−1); Rn= net radiation (MJ m−2day−1); G= soil 

heat flux density (MJ m−2 day−1); c= psychometric constant (kPa°C−1); T= mean air temperature (°C); U2 = average 24h 

wind speeds at 2m 

The Oakville weather station is an automated weather station (Latitude 38° 26' 02'' N, Longitude 122° 24' 35'' W) 

operated by the California Irrigation Management Information System (CIMIS). Here, the total incoming solar radiation is 

measured using pyranometer at a height of 2.0 m above the ground. Air temperature is measured at a height of 1.5 m 

Above the ground using a thermistor. Relative humidity is the ratio of the actual amount of water vapor in the 

atmosphere, to the amount the atmosphere can potentially hold at the given air temperature. The relative humidity sensor is 

sheltered in the same enclosure with the air temperature sensor at 1.5 m above the ground. Wind speed is measured using 

three- cup anemometers at 2.0 m above the ground. Twelve years (2000–2012) of these measured daily climatic data and 

the ET0 values calculated using the CIMIS Penman is downloaded from the CIMIS web server 

(http://wwwcimis.water.ca.gov). The data sample consists of daily records of solar radiation (Rs), air temperature (T), 

relative humidity (RH) and wind speed (U2). The first ten years (2000–2010) data are used for training and the remaining 

data are used for testing. Table 1 summarizes statistical information on the training (Table 1a) and testing (Table 1a) data 

sets for the Oakville station. 

 

Figure 1: ANN Model Structure 
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Table 1: Statistical Parameters of Oakvile Station (Canada) 
(a) 

 Testing data(01/01/2000to31/01/2010) 
Parameters ET0 Rs T U2 RH 

Unit mm/day Ly/day (°F) MPH (%) 
Maximum 8.382 784 77.2 9.3 97 
Minimum 0 24 35.3 1.8 1 
Mean 3.507 428 56.3 3.7 67 
Std.deviation 1.9959 197 8.94 1.16 15.42 
Range 8.382 760 41.9 7.5 96 

 
(b) 

 Testingdata(01/01/2011to23/07/2012) 
Parameters ET0 Rs T U2 RH 

Unit mm/day Ly/day (°F) MPH (%) 
Maximum 8.382 784 77.2 9.3 97 
Minimum 0 24 35.3 1.8 1 
Mean 3.507 428 56.3 3.7 67 
Std.deviation 1.9959 197 8.94 1.16 15.42 
Range 8.382 760 41.9 7.5 96 

 
Eight ANN models, i.e., ANN1, ANN2, ANN3, ANN4, ANN5 ANN6, ANN7, and ANN8 are developed using 

different inputs (Table 2). The daily data of Rs, T, RH, U2, ET0, t−1, ET0, t−2 and ET0, t−3 were used in combination 

with each other as inputs to develop the most efficient ANN model for predicting evapotranspiration. The output in all 

models was ET0, t, i.e., the current-day evapotranspiration. The number of neurons in the hidden layer was changed from 1 

to 20 neurons with the objective of minimizing the 

Root mean square error (RMSE) between the measured and predicted evapotranspiration. A program code was 

written in MATLAB for simulation of the ANN model. To compare the results of ANN models, eight linear regression 

models, i.e., LR1, LR2, LR3, LR4, LR5, LR6, LR7 and LR8 with the same inputs as used in respective ANNs were 

developed. The statistical indices used for performance comparison of models are the mean absolute error (MAE), RMSE, 

correlation coefficient (CC) and discrepancy ration (DR) which are defined as: 

             (5) 

             (6) 

               (7) 

Where N = the number of data, ETp, ETo are the predicted and observed evapotranspiration respective and SS, are 

the standard deviation of the predicted and observed op evapotranspiration respectively. 
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 DR = 0 suggests exact matching between measured and predicted values; otherwise, there is either over 

prediction [DR > 0, i.e., ETp > ETo] or under-prediction [DR < 0, i.e., ETp < ETo]. 

RESULTS AND DISCUSSIONS 

First, the developed ANN models are trained using daily data for ten years of the Oakville Weather Station. After 

training the networks satisfactorily, their performance is evaluated using another two years’ data. The performance of the 

developed models is shown in Table 3. 

The first model, ANN1/LR1 is formed with Rs, T, RH, and U2as inputs. These meteorological Factors are known 

to affect ET considerably. As expected, solar radiation (Rs), air temperature (T), relative humidity (RH) and wind speed 

(U2) is  found adequate to predict the evapotranspiration as the model shows little deviation from the observed values 

having a very satisfactory CC and RMSE. In fact, ANN1outperformed all the other developed models with the minimum 

RMSE and the maximum coefficient of correlation between the observed and the predicted values of the current-day 

evapotranspiration. In models ANN2 and LR2, another input, the previous-day evapotranspiration, ET0,t−1, is added to see 

its effect on the performance of the neural network and linear regression models. As can be seen from Table 3,                        

the LR model shows some improvement as its RMSE is slightly reduced from 0.317 to 0.310; however, there is no 

improvement in the value of CC. ANN model, on the other hand, deteriorates as its RMSE increases from 0.256 to 0.259 

and CC decreases from 0.992 to 0.991. Other inputs, ET0, t−2 and ET0, t−3 are added to LR3/ANN3 and LR4/ANN4 

models respectively. It is clear from Table 3 that the addition of inputs does not improve the performance of LR and ANN 

models. In simple models LR5 and ANN5, only RS and T are considered as inputs. But their performance is not 

satisfactory. They have the 

Minimum Coefficient of Correlation and Maximum RMSE  

Thus, in case of linear regression models, LR3model with Rs, T, RH, U2, ET0, t-1, ET Inputs has the best 

accuracy while among the neural network models, ANN1 with R, T, RH and U as input perform the best. Figure 2shows 

percentage of predicted values of evapotranspiration by the best ANN and LR models, i.e., ANN1 and LR3 falling in 

different discrepancy brackets. The figures show an even distribution of  the predicted values around the ideal point, 

showing no tendency for over- or under-prediction. More than 67% predicted values have deviation less than 1% from the 

observed values, whereas 

LR3 has less than 47% predicted values with the deviation less than 1%.  

Table 2: Model Inputs 
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Table 3: Performance Indices of Developed Models for Verification Dataset 

Models Model Inputs 
RMSE(mm/day) CC 

LR  ANN LR  ANN 
LR1/ANN1 RS, T, RH and U2 0.317 0.256 0.988 0.992 
LR2/ANN2 RS,T, RH, U2 and ET0,t−1 0.310 0.259 0.988 0.991 
LR3/ANN3 RS,T, RH, U2, ET0,t−1 and ET0,t−2 0.309 0.258 0.989 0.992 
LR4/ANN4 RS,T, RH, U2, ET0,t−1, ET0,t−2 and ET0,t−3 0.311 0.268 0.989 0.991 
LR5/ANN5 RS and T 0.375 0.350 0.982 0.985 

 

 

Figure 2 

CONCLUSIONS 

In the present work, the efficiency of ANN models in predicting evapotranspiration is investigated. Based on 

meteorological inputs, i.e., solar radiation, relative humidity, previous day’s evapotranspiration, temperature and wind 

speed, five ANN models are developed. The developed models are evaluated using twelve-year data about  Oakville 

Weather Station (Canada). Though all ANN models produce satisfactory results, the best ANN model is the one 

comprising input set of solar radiation, temperature, relative humidity and wind speed. This model predicted 

evapotranspiration closest to the measured values. For comparison purpose, five linear regression models are also 

developed. 

ANN models are found superior to LR models. This is because the relationship between solar radiation, 

temperature, relative humidity, wind speed and evapotranspiration is an essential nonlinear, which is best captured by 

neural networks. The best performing ANN models predicted ET0 with the minimum RMSE of 

0.256 mm/day and the maximum CC of 0.992, 

Whereas the respective values of  the best performing LR model are 0.309 mm/day and 

0.989 Only. 
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