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ABSTRACT

The prior knowledge of evapotranspiration @Tis crucial for estimating crop-water demand, paegtion of
water distribution schedules and water diversiohe Tpresent study investigates the utility of anitii neural networks
(ANN) and lines a regression model (LRs) for fostiog ET) based on hydro-meteorological data. Based on differ
inputs, eight ANN and LR models are developed. rékalts are compared with those of FAO-56 Penmantbith
expression. The published daily climatic data fritve Oakville Station (Canada) are used to verify #éffectiveness of the
developed models. Based on various performanceasdANN models are found predictinggiiore accurately than LR
models. The best performing ANN model has paraséker previous day’s evapotranspiration, relathuamidity, average

temperature, solar radiation and wind speed as iapu
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INTRODUCTION

Evapotranspiration is a term used to describe #maads of evaporation and the plant transpirafiwaporation
accounts for the movement of water to the air frib@ sources such as soil, canopy interception, veaigr bodies,
whereas, transpiration accounts for the movememiatér within a plant and the subsequent loss ¢émas vapor through
stomata in its leaves. Modeling evapotranspiratias always been an important issue for irrigatiod agriculture
engineers. Irrigation engineers require it for detaing irrigation water quantity for designing thanals while agriculture
engineers for knowing the specific water requireta@f a crop so that they can obtain a satisfactimiy.

Numerous methods have been proposed for estimagiapotranspiration. The combination of energy
balance/aerodynamic equations generally provides hiccurate results as a result of their foundatigphysics and basis
of rational relationships [1]. The Food and Agtiatal Organization of the United Nations (FAO) tecepted the FAO
Penman-Monteith as the standard method for estmati ET). However, the large data requirement of this metlkadts
greatest demerit. On the other hand, soft computeuniques like artificial neural networks (ANNaje gaining
popularity for forecasting hydrological parametéecause of their ability to model both linear amhinear systems
without the need to make assumptions as are irhphcimost traditional approaches. This ability oNK capture
relationships from given patterns Has enabled ttetve employed in various hydraulic and hydrolgmioblems such as
modeling of river runoff [2,3], stream water levd|, 5], river flow [6-8], evapotranspiration [9]raund water table

fluctuation[10,11], reservoir operation rule [12}1dispersion coefficient prediction [15], only bame a few.
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In this study, the potential of ANNs is examinecestimating the actual evapotranspiration fromtkahiclimatic
data. We have selected neural networks in our shgdthese heuristics are particularly suited fodetiog nonlinear,
non-stationary and non- Gaussian processes liksetbeen countered in hydrological contexts. Limegression has been
included in this study as a yardstick to gaugeptadgormance of ANN models because it is simpledwetbp and widely

employed in hydrologic modeling.
ARTIFICIAL NEURAL NETWORKS

An artificial neural network involves a network sifnple processing elements called neurons whichegaibit
complex global behavior, determined by the conpestibetween the processing elements and elemeamptars.
Artificial neurons were first proposed in 1943 byaén McCulloch, a neurophysiologist, and WaltettsPian MIT
logician. While a neural network does not havedabaptive, its practical use comes with algoritdesigned to alter the
strength (weights) of the connections in the nekworproduce a desired signal flow. The procedsi@wvn as training or
learning. Training of an artificial neural netwarkvolves two phases. In the first phase or forwaads, the input signals
propagate from the network input to the outputthie second phase or reverse pass, the calculatedsgnals propagate
backward through the network, where they are usedljust the weights. The calculation of the Outpwdarried out, layer
by layer, in the forward direction. The output afeolayer is the input to then ex-layer. In the regepass, the weights of
the output neuron layer are adjusted first for trget value of each output neuron is availablguide the adjustment of
the associated weights. The weights on the owtpdthidden layer neurons can be calculated usirsg @9 and (2),
respectively [16]:

WV +1) = w(N) - 15 o

wn+1) =wN)+nx> 6,

= &)

Where, x = input valuej=learning ratefp= output; andisdefinedasg o@dl |, | being the sum of the weighted

inputs, g= neuron index of the output layer, ageerror signal.

The above training method is known as the stanbauok-propagation training method. Since back-prapiag
employs a form of gradient descent, it is assurhadl the error surface slope is always negative teerdte, constantly
adjusting weights toward the minimum. However, esorfaces often involve complex, high dimensiosgéce that is
highly convoluted with hills, valleys, and folds.i$ very easy for the training process to getgeapin a local minimum.
The problem of the local minima can be avoided bglieg a momentum term for the weight change tanjtelarger

learning rates. The change of weight is then coetpas follows:

AW(N +1) =—16¢+ piAw(N) -

Where p = momentum coefficient and/ (N + 1) = change of weight during td N + 1 learning cycles. Thus, the
new value of weight becomes equal to the previcalsevof the weight plus the weight change, whictiudes the
momentum term. This training method is known askh@opagation with momentum. A typical ANN struatuwith five
inputs R, T, ETO, t-1, ETO, t-2 and ETO, t-3 arevsh in Figure 1.
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MODEL APPLICATION

Eight models, each of ANN and LR are developed gardicting evapotranspiration and their effectiwne

evaluated on Oakville weather station (Canada). greelicted values of Ejby these models are compared with those by

FAO-56 Penman-Monteith expression, which is describy Allenet al.[1] As:

900
0.408A(Rp —G)+y7—, —U> (ea—€q)

0=

Where = slope of the saturation vapor pressuret'r[urm¢kPa°C_1); Rn= net radiation (MJ rﬁzday_l); G= sail

heat flux density (MJ ﬁ12 day_l); c= psychometric constant (kPa_"b; T= mean air temperature (°Q)2 = average 24h

wind speeds at 2m

The Oakville weather station is an automated weatagion (Latitude 38° 26' 02" N, Longitude 122F 35" W)
operated by the California Irrigation Managemerioimation System (CIMIS). Here, the total incomswar radiation is

measured using pyranometer at a height of 2.0 meatt® ground. Air temperature is measured atghheif 1.5 m

Above the ground using a thermistor. Relative hityiis the ratio of the actual amount of water viapothe
atmosphere, to the amount the atmosphere can @dtghbld at the given air temperature. The retathumidity sensor is
sheltered in the same enclosure with the air teatpex sensor at 1.5 m above the ground. Wind sisee@asured using
three- cup anemometers at 2.0 m above the groumelvé years (2000-2012) of these measured daityatic data and
the ETO values calculated using the CIMIS Penman dewnloaded from the CIMIS web server
(http://wwwcimis.water.ca.ggv The data sample consists of daily records o@rsoddiation (Rs), air temperature (T),
relative humidity (RH) and wind speed (U2). Thestfiten years (2000-2010) data are used for trammtthe remaining
data are used for testing. Table 1 summarizesttati information on the training (Table 1a) apedting (Table 1a) data

sets for the Oakville station.

Feed-forward direction -

Input Layer Hidden Layer Output Layer
Bias

Input Parameter Output Parameter

«— Error back propagation

Figure 1: ANN Model Structure
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Table 1: Statistical Parameters of Oakvile StatiofCanada)

(@
Testing data(01/01/2000t031/01/2010)
Parameters ETo Rs T u2 RH
Unit mm/day Ly/day (°F) MPH (%)
Maximum 8.382 784 77.2 9.3 97
Minimum 0 24 35.3 1.8 1
Mean 3.507 428 56.3 3.7 67
Std.deviation 1.9959 197 8.94 1.16 15.42
Range 8.382 760 41.9 7.5 96
(b)
Testingdata(01/01/2011t023/07/2012)
Parameters ETo Rs T u2 RH
Unit mm/day Ly/day (°F) MPH (%)
Maximum 8.382 784 77.2 9.3 97
Minimum 0 24 35.3 1.8 1
Mean 3.507 428 56.3 3.7 67
Std.deviation 1.9959 197 8.94 1.16 15.42
Range 8.382 760 41.9 7.5 96

Eight ANN models, i.e., ANN1, ANN2, ANN3, ANN4, ANBNANNG, ANN7, and ANN8 are developed using
different inputs (Table 2). The daily data of R$,RH, U2, ETO, t-1, ETO, t-2 and ETO, t-3 were usedombination
with each other as inputs to develop the mostiefficANN model for predicting evapotranspiratiorheToutput in all
models was ETO0, t, i.e., the current-day evapopiaatson. The number of neurons in the hidden layas changed from 1

to 20 neurons with the objective of minimizing the

Root mean square error (RMSE) between the measumédredicted evapotranspiration. A program cods wa
written in MATLAB for simulation of the ANN modelTo compare the results of ANN models, eight linesgression
models, i.e., LR1, LR2, LR3, LR4, LR5, LR6, LR7 ah&8 with the same inputs as used in respective aNbre
developed. The statistical indices used for peréoroe comparison of models are the mean absolute (MAE), RMSE,

correlation coefficient (CC) and discrepancy rat{piR) which are defined as:

1. )
RMSE=_|— ET. —ET Y
J_N é ( rad a )
(5)
N N N ]
[Z ET,ET,- > ET,>ET,
CC == =l 1 1 =
NS, S, ©)

ET
DR=log—2
L, 7)
WhereN = the number of dat&Tp, EToare the predicted and observed evapotranspiraspective an&S,are

the standard deviation of the predicted and obsespe&vapotranspiration respectively.
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DR = 0 suggests exact matching between measurddpesdicted values; otherwise, there is either over
prediction [DR > 0, i.e ETp> ETq or under-prediction [DR < 0, i.eETp< ETQ.

RESULTS AND DISCUSSIONS

First, the developed ANN models are trained usiaifydiata for ten years of the Oakville WeathertiSta After
training the networks satisfactorily, their perf@amnce is evaluated using another two years’ data.pEnformance of the

developed models is shown in Table 3.

The first model, ANN1/LR1 is formed with Rs, T, Rbd Uas inputs. These meteorological Factors are known
to affect ET considerably. As expected, solar rémia(Rs), air temperature (T), relative humidiH) and wind speed
(U,) is found adequate to predict the evapotranspirads the model shows little deviation from thesertved values
having a very satisfactory CC and RMSE. In fact,Nddutperformed all the other developed models withminimum
RMSE and the maximum coefficient of correlationvietn the observed and the predicted values of wherg-day
evapotranspiration. In models ANN2 and LR2, anothput, the previous-day evapotranspiration, ETD,is added to see
its effect on the performance of the neural netwarid linear regression models. As can be seen ffable 3,
the LR model shows some improvement as its RMSHlightly reduced from 0.317 to 0.310; however, ¢hés no
improvement in the value of CC. ANN model, on thkeo hand, deteriorates as its RMSE increases &-@%6 to 0.259
and CC decreases from 0.992 to 0.991. Other inffi§, t—2 and ETO, t—-3 are added to LR3/ANN3 and/ARN4
models respectively. It is clear from Table 3ttt addition of inputs does not improve the perfamoe of LR and ANN
models. In simple models LR5 and ANN5, only RS dndare considered as inputs. But their performarscadt

satisfactory. They have the
Minimum Coefficient of Correlation and Maximum RMSE

Thus, in case of linear regression models, LR3medtt Rs, T, RH, U2, ETO, t-1, ET Inputs has thestbe
accuracy while among the neural network models, AN#th R, T, RH and U as input perform the bésgure 2shows
percentage of predicted values of evapotranspirdtip the best ANN and LR models, i.e., ANN1 and LfaBing in
different discrepancy brackets. The figures showewen distribution of the predicted values arotnel ideal point,
showing no tendency for over- or under-predictidiore than 67% predicted values have deviationtlegs 1% from the

observed values, whereas
LR3 has less than 47% predicted values with théatien less than 1%.

Table 2: Model Inputs

Model Input
LR1/ANN1 Rg, T, RH and Us
LR2/ANN2 Rs.T. RH. Uyand ETpy,
LR3/ANN3 R, T, RH, Uy, ETy, and ETy, 5
LR4/ANN4 Rg.T. RH, Uy, ETgyy. ETgppand ETg,s
LR5/ANNS Rgand T
LR6/ANNG R5.Tand ETgyy
LR7/ANN7T Rs.T.ETy, and ETg,n
LRS/ANNS R, T, ETy;y, ETpprand ETg, s
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Table 3 Performance Indices of Developed Models for Verifiation Dataset

CONCLUSIONS

RMSE(mm/day) CcC
Models Model Inputs LR ANN R ANN
LR1/ANN1 |Rs, T, RHand 0.317 0.256 0.988 0.992
LR2/ANN2 [RST, RH, Upand ETo t-1 0.310 0.259 0.988 0.991
LR3/ANN3 |RST, RH, W, ETp t-1and ET0 t-2 0.309 0.258 0.989 0.992
LR4/ANN4 |RST, RH, W, ETo t-1, ETo,t-2andET0t-3| 0.311 | 0.268 | 0.989 0.991
LR5/ANN5 |Rsand T 0.375 0.350 0.982 0.98%
25 -
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R 10_
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Figure 2

In the present work, the efficiency of ANN modets predicting evapotranspiration is investigatedsdghon

meteorological inputs, i.e., solar radiation, relthumidity, previous day’'s evapotranspiratiormperature and wind

speed, five ANN models are developed. The develapedels are evaluated using twelve-year data ab@akville

Weather Station (Canada). Though all ANN modelsdpece satisfactory results, the best ANN model is time

comprising input set of solar radiation, tempematurelative humidity and wind speed. This model dicted

evapotranspiration closest to the measured valbes.comparison purpose, five linear regression rsodee also

developed.

ANN models are found superior to LR models. Thisbecause the relationship between solar radiation,

temperature, relative humidity, wind speed and etrapspiration is an essential nonlinear, whictbést captured by
neural networks. The best performing ANN modelgljmted ETOwith the minimum RMSE of

0.256 mm/day and the maximum CC of 0.992,

Whereas the respective values of the best penfigrrhR model are 0.309 mm/day and

0.989 Only.
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